Cadmium and VOC Bioremediation in the Richmond Zeneca Site

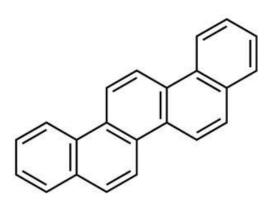
BY ALEXANDER GOMEZ

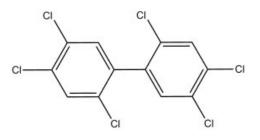
Introduction

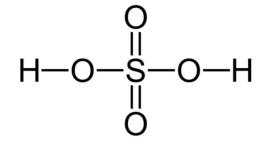
Cadmium 112.414

Background Information about Cadmium

- Cd has gotten worldwide attention for its large accumulation in agricultural soils and its anthropogenic activities.
- Cadmium contamination in soil is a global issue, and has many negative side effects on our agricultural yields, oceanic toxicity, and human health




Zeneca Site: Location


- Heavily contaminated site
- Richmond Shoreline
- Potential for housing use,
 - But lacks environmental safety.

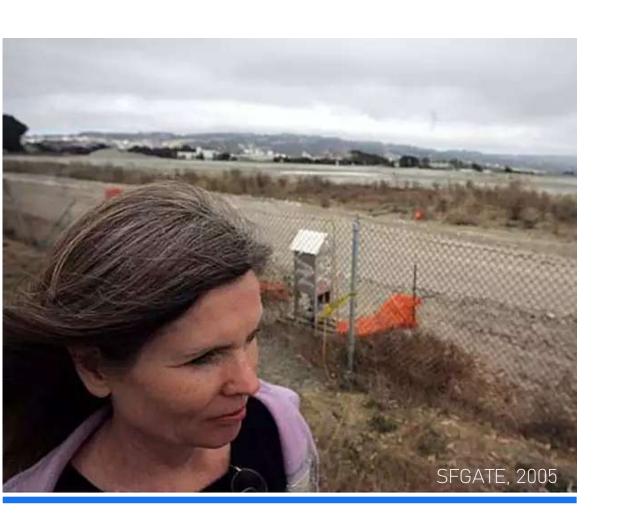
Richmond Zeneca Site

- Manufacturing site for:
 - Sulfuric Acid
 - Pesticides
 - Fungicides
- Found in Soil:
 - Heavy metals (Cadmium compounds amongst many others)
 - Pesticides
 - Sulfuric Acid
 - VOCs
 - PCBs, PAHs (harmful aromatics)

Current
Efforts at
Zeneca Site

REMOVAL OF CONTAMINATED SOILS

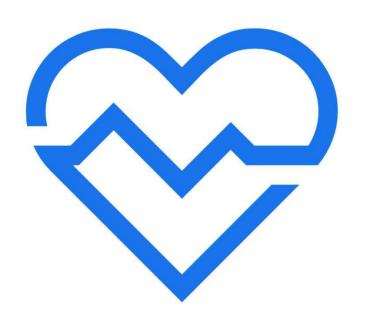
SEDIMENT CAP REPLACEMENT


POST REMEDIAL GROUNDWATER, SURFACE WATER, AND STORMWATER MONITORING

POST REMEDIAL AIR MONITORING

Who Could Be Affected?

- Current nearby residents
- Possible homeless populations near the Zeneca site
- Future homeowners
- Surrounding shoreline wildlife
- Nearby Community
 Workers

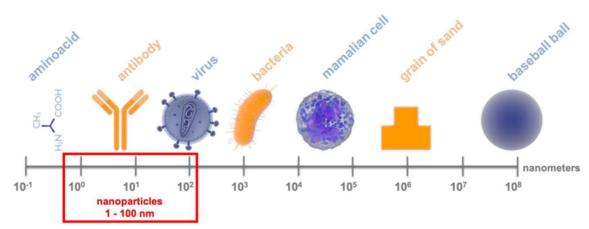


Testimony from Community Member

"An unusual number of tumors, cancers and illnesses surfaced among 24 individuals out of 300 working full time in the neighborhood within a two year period. Of the 24 individuals, 11 are dead. Maybe some of those could be considered normal. I do not consider my case normal [...] I missed three days of work for illness in more than 25 years of professional work. A silent, insidious and deadly toxic exposure altered and damaged my genetic code, allowing these tumors to grow unfettered."

-Sherry B. Padgett< Berkeley Daily Planet, 11-9-2004

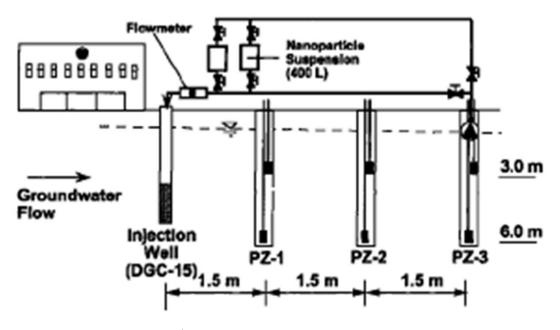
Health Inequities At Play

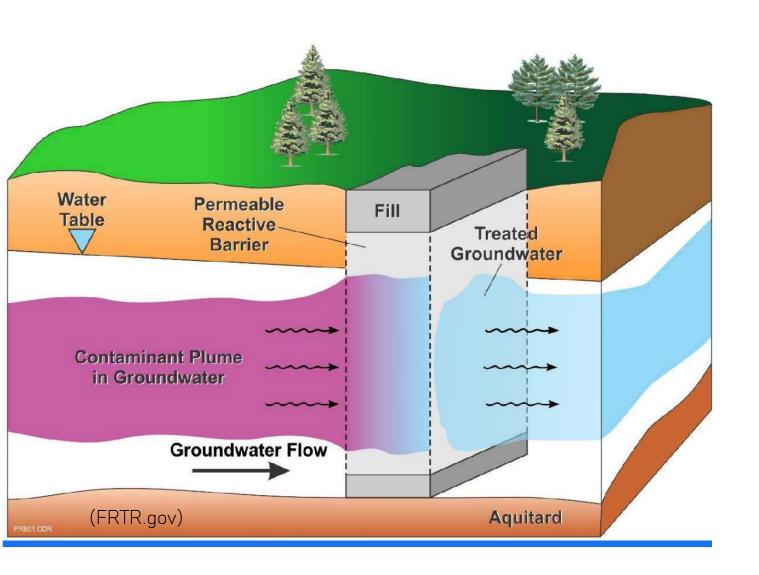


Built Environment

Lifestyle (for some)

Healthcare Access for affected residents and victims


Possible Solution(s): Nanoparticles


(Steckiewicz, et al. 2020)

- Range between 1 and 100 nanometers
- Size of a nanoparticle impacts its properties
 - Example: Quantum Dots' light emission is proportionate to the size it is.

Zero Valence Iron Permeable Reactive Barriers

(Galdames. et al. 2020)

Permeable Reactive Barriers

- Used for treating groundwater
- In situ soil treatment is very promising as it requires little alteration of soil structure and integrity.
- BUT presents issues with lower remediation potential because of varying contaminant levels.
 - Zero Valence Iron (ZVI)
 is implemented to these
 systems to amend these
 issues.

Review

Zero-Valent Iron Nanoparticles for Soil and Groundwater Remediation

Alazne Galdames ¹, Leire Ruiz-Rubio ^{1,2,*}, Maider Orueta ³, Miguel Sánchez-Arzalluz ³ and José Luis Vilas-Vilela ^{1,2}

- Inert state of Iron (Fe0)
- Modular in how it can be applied (naturally polymerized NZVI)
- Inexpensive, nontoxic, moderate reducing agent.
- When paired with water, can form hydrogen peroxide, which then gets reduced back to water.
 - This property allows it to be a strong oxidative capability to degrade organic contaminants and metals

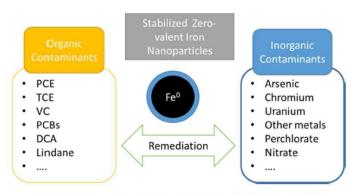


Figure 7. Summary of the main contaminants remediated with stabilized NZVI.

$$Fe^{0} + O_{2} + 2H^{+} \rightarrow Fe^{2+} + H_{2}O_{2}$$

 $Fe^{0} + H_{2}O_{2} + 2H^{+} \rightarrow Fe^{2+} + 2H_{2}O$
 $Fe^{2+} + H_{2}O_{2} \rightarrow Fe^{3+} + \cdot OH + OH^{-}$

NZVI in PRB Technology

Table 6. Summary of pilot and full-scale tests for polymer coated NZVI particles.

Pollutants	Conc. Decrease	Addition Method	Site	Comments	Location	Reference
Chlorinated compounds	>90%	Injection in two phases		30 days	Hamilton Township, New Jersey (USA)	[32]
TCA, DCE, TCE, PCE	80-90%	r/a	Soil	n/a	Naval Air Engineering Station of Lakehurst (USA)	[98]
TCA, DCE, TCE, PCE	80-90%	n/a	Soil	n/a	Naval Air Station of Jacksonville (USA)	[98]
PCE	90%	r/a	Soil	2 years after, more reduction	Bornheim, Germany (Europe)	[137]
PCE, TCE, DCE	60-75% for Horice and 90% for Pisecna	Injection (82 injection wells)	Soil	n/a	Czech Republic (Horice and Pisecna)	[137]
Chlorinated compounds	>90%	n/a	n/a	30 days	Hamilton Township, New Jersey (USA)	[32]

"Some pilot and full-scale tests have carried out by using stabilized NZVI (Table 6). In Hamilton Township, New Jersey (USA), a remediation strategy based on this nanotechnology showed positive results. The NZVI were injected in two phases and the duration of the test was 30 days. The results showed a decrease in the concentration of chlorinated contaminants of up to 90 percent"

(Galdames et al. 2020)

Limitations

- Formation of nanoparticle aggregation
- Lack of mobility of bare NVZI
 - Where polymer coating comes in
- More analysis on potential ecological and environmental risk because of their nanoparticle scale
- Lack of studies on the ecotoxicity or bioaccumulation on pilot and complete clean up.

Conclusion

NZVI's can be a promising solution to the Richmond Zeneca site

Provides a wide ranged list of targeted contaminants, (metals, VOCs, PCBs, etc.)

Has a high concentration % decrease in contaminants.

Has versatile colloidal properties that can allow them to improve when treated with biodegradable polymers

Questions?

Works Cited

- Galdames, A., Ruiz-Rubio, L., Orueta, M., Sánchez-Arzalluz, M., & Vilas-Vilela, J. L. (2020, August 11). Zero-valent iron nanoparticles for soil and groundwater remediation. International journal of environmental research and public health. https://pmc.ncbi.nlm.nih.gov/articles/PMC7460444/
- Permeable reactive barriers. Technology Screening Matrix | Federal Remediation Technologies Roundtable (FRTR). (n.d.). https://frtr.gov/matrix/Permeable-Reactive-Barriers/#Schematic
- Romero, E. D. (2024, January 10). State regulators scrutinize climate plan for controversial richmond housing development. KQED. https://www.kqed.org/science/1981077/state-regulators-scrutinize-climate-plan-for-controversial-richmond-housing-development loffee, K. (2024, October 9). Zeneca site: Prime home spot or toxic danger-zone?. Richmondside. https://richmondside.org/2024/10/09/richmond-zeneca-site-housing-project-stalled/
- State sued over inadequate cleanup plans for Richmond Toxic Waste Site: Groups claim analysis ignored data on sea-level rise and pollutants. Richmond Progressive Alliance . (n.d.). https://www.richmondprogressivealliance.net/astra_zeneca_press_release_aug_2021
- Steckiewicz, Karol & Inkielewicz-Stepniak, Iwona. (2020). Modified Nanoparticles as Potential Agents in Bone Diseases: Cancer and Implant-Related Complications. Nanomaterials. 10. 658. 10.3390/nano10040658.